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Assessing portfolio market risk in the BRICS economies: use of multivariate 

GARCH models 

Abstract  

This paper compares the performance of the different models used to estimate portfolio value-at-

risk (VaR) in the BRICS economies. Portfolio VaR is estimated with three different multivariate 

risk models, namely the constant conditional correlation (CCC), the dynamic conditional 

correlation (DCC) and asymmetric DCC (ADCC) GARCH models. Risk performance measures 

such as the average deviations, quadratic probability function score and the root mean square error 

are used to back-test the performance of the models at 90%. The results indicate that portfolios 

with more weight to currency and less to equities prove to be the best way of minimizing loses in 

BRICS.   
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1. Introduction  

Over the past decade the economies of the BRICS grouping have grown tremendously. The group 

has been predicted by a number of economists to overtake the US and EU by 2050 in term of real 

GDP (OõNeill, 2001). In the previous decade, returns from the BRICs equities grew by more than 

four times in the Standard and Poorõs Index and the average economic growth in these countries 

was as much as four times higher than the USõs (Patterson and Chen, 2011). This has made the 

BRICS countries an attractive investment destination for asset managers and investors in search 

of high yield and opportunities for portfolio diversification. In spite of being an attractive 

investment destination, the volatile BRICS environment is associated with high risks and as a result 

investors are always cautious about such risk and the consequences thereof. Thus, risk 

management is an important requirement for investors who are willing to invest in emerging 

markets in general and in the BRICS countries in particular.   

Value at risk (VaR) is used by investors to measure and control the level of risk that they undertake. 

It is the responsibility of investors to ensure that the risks undertaken are not beyond the level at 

which they can absorb the losses of a probable worst outcome (Bonga-Bonga and Mutema, 2009). 

VaR attempts to measure how much an investment stands to lose over a target horizon within a 

given confidence interval.  

The estimation and the valuation of VaR as well as the possibility of reducing risk when investing 

in the BRICS countries should be one of the priorities and concerns of investors and asset 

managers. Jorion (1996) suggests that VaR is an important method for controlling institutional 

investorõs risk exposures and as such, any investor considering investing in the BRICS or any other 

country or region for that matter should consider determining the level of VaR for any investment 

exposure. In addition, an investor that intends to invest in different asset classes needs to 

determine the level of weights for each asset that minimizes the portfolio VaR. 

There are three methods of quantifying VaR, namely historical simulation, Monte Carlo simulation 

and the variance-covariance method (see Cabedo and Moya, 2003; Glasserman et al., 2000; 

Berkowitz and OõBrien, 2002; Bonga-Bonga and Mutema, 2009. Hendricks (1996) suggests that 

the best method to apply when estimating VaR depends on the task at hand. This suggestion 

implies that a study that focuses on assessing the best volatility model for a VaR estimation should 

naturally rely on the variance-covariance method. Thus, this paper chooses to estimate the VaR 

for BRICS countries by making use of the variance-covariance method based on the different 

families of multivariate GARCH models.  
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A substantial number of studies have concentrated on market risk modelling using multivariate 

GARCH models (Lee, Chiou & Lin (2006), Hsu Ku & Wang (2008), Santos et al. (2013) and 

Nyssanov (2013), among many others) but few of these studies, to the best of our knowledge, has 

applied this technique on emerging markets in general and on BRICS in particular. Moreover, none 

of these studies have analyzed the effects of different portfolio weights on the VaR for BRICS 

economies. The high volatile nature of emerging markets data raises a particular interest for VaR 

estimation based on GARCH models and for portfolio selection. As such our paper is the first to 

estimate VaR by using multivariate GARCH models and accounting for the effect of different 

portfolio weights on the VaR within BRICS economies. Thus, this paper compares the 

performance of three multivariate GARCH risk models, the DCC, ADCC and CCC, in estimating 

portfolio VaR for each of the five BRICS countries (Brazil, Russia, India, China and South Africa). 

In addition, this paper investigates the effect of changing portfolio weights on our VaR estimation. 

We construct three different portfolios for each country and each portfolio is made up of two 

assets: equities and currencies. The first portfolio considers equal weighting between currency and 

equity, the second portfolio gives more weight to equities (80%) and less weight to currencies 

(20%) and the third portfolio provides less weight to equities (20%) and more weight to currencies 

(80%). Although the weights assigned were provided arbitrarily, nonetheless they provide 

information as to how different weights of the two assets within a portfolio that is constituted of 

equity and currency will affect the performance of the VaR measure. The performance of these 

models is compared with the aid of a back-testing process by making use of the quadratic 

probability score (QPS) function, the root mean square error (RMSE), the number of exceptions 

and average deviations (AD) between the VaR and the realized return series as previously 

employed by Hsu Ku and Wang (2008) and Aniunas, Nedzveckas and Krusinskas (2015). As stated 

earlier, no study has ever attempted to estimate the VaR of a portfolio that is constituted of equity 

and currency in order to uncover the optimal weight of the two assets that minimizes the portfolio 

risk. 

It is important to note that a portfolio that combines equity and currency not only has the ability 

to minimize the risk (exchange rate risk) of investing in an emerging market, but this combination 

of assets also provides investors with some safety to conserve the real value of their investment in 

the equity market. The findings of this paper will be beneficial to asset managers and investors that 

seek to hedge their equity exposure in the BRICS markets. 

The rest of the paper is structured as follows: section 2 presents a review of literature of selected 

studies that focus on the estimation of VaR. Section 3 explains how value-at-risk is estimated based 
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on the variance-covariance method, with a focus on the different multivariate volatility models 

used in the paper. Section 4 presents the data used in the paper, the estimation of VaR for the 

different BRICS countries and discussion of the results obtained. Section 5 concludes the paper. 

2. Literature review 

Accurate estimation of covariance matrices and correlations between assets is essential for optimal 

portfolio construction, asset allocation and risk management, and therefore numerous studies have 

been devoted to obtaining reliable correlation estimates. The dynamic nature of correlations 

between assets has been the motivation for the use of a number of multivariate models. 

Multivariate GARCH models have received a lot of attention recently as evidenced by the 

emergence of new models. Bollerslev (1990) proposes a constant conditional correlation model 

with time-varying conditional variances and covariances. Engle (2002) shows that the assumption 

of constant correlations between financial assets is too limiting and not realistic in practice and as 

such new correlation models that take into account time-varying correlations have been proposed. 

Hence, the author proposes the DCC, which has the flexibility of univariate GARCH models but 

easy to estimate. Indeed, the fact that the number of parameters to be estimated does not depend 

on the number of the series to be correlated is one of the DCCõs computational advantages over 

other multivariate GARCH models.  

As already shown by studies such as that of Engle (2002), correlations between financial assets are 

not constant, as is usually assumed. Silvennoinen and Teräsvirta (2005) use daily returns of 

Standard and Poorõs 500 (S&P 500) futures index and a 10-year bond futures index to investigate 

the relationship between stocks and bonds where the BEKK, GOF, DCC, DSTCC and SPCC 

GARCH models are used to estimate conditional correlations. The authors find that correlations 

vary most of the time. Hsu Ku (2008) use the DCC-GARCH-t and the CCC-GARCH-t models 

for the computation of correlation coefficients among major equity and currency markets in the 

US, Japan and the UK, and all correlation coefficients are found to be time varying. 

 

Only a few studies on market risk modelling have used multivariate GARCH models as compared 

to univariate models. For example, Lee, Chiou and Lin (2006) use DCC-GARCH, simple moving 

average (SMA) and exponentially weighted moving averages (EWMA) models to estimate the 

portfolio VaR of the G7 countries (US, UK, Japan, Germany, France, Canada and Italy). The 

Kupiec proportion of failure test and the RMSE are applied to measure the accuracy and efficiency 
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of the models. The authors find that the DCC-GARCH (1, 1)-t outperforms all the other models 

in measuring VaR followed by the DCC-GARCH (1, 1), then lastly the SMA. 

Different methods for testing the performance of VaR have been used. For example, Hsu Ku and 

Wang (2008) compare the performance of the different GARCH models in forecasting the VaR 

of the usd/gbp, usd/jpy and the usd/eur exchange rates. The authors use two tests, namely the 

number of prediction failures and the average deviation between VaR and the realized returns, to 

back-test the VaR. They evaluate the performance of the DCC, BEKK and the CCC. The authors 

find that the BEKK outperforms the other models according to average deviations and the DCC 

tops according to the number of failures. However, the authors find that the number of failures 

criterion reveals stronger ranking and in this regard the DCC performs better. 

Nyssanov (2013) evaluate the performance of GARCH models and classical approaches and 

compare these models in one-step-ahead forecasts of VaR. The authors make use of four tests, 

namely the violation ratio, Kupiec test, Christoffersenõs test and joint tests for the evaluation of 

the methods. The asset returns of the seven largest copper companies, namely Codelco, Freeport 

McMoRan, BHP Billiton, Xstrata, Anglo American Pic, Rio Tinto and Kazakhmys are used in the 

estimation of 99% and 95% VaR estimates. Four portfolios are constructed for the calculation of 

VaR values. The historical simulation, unconditional parametric, RiskMetrics, DCC-GARCH and 

GO-GARCH VaR estimation methods are employed. 99% VaR forecasts show that the historical 

simulation method gives better results, while 95% VaR forecasts on the other hand show that the 

DCC- and GO-GARCH VaR-based models outperform the other models. 

Very few studies have incorporated different portfolio weights in the estimation of portfolio VaR. 

Rombouts and Verbeek (2009) compare parametric (normal and student-t distributions) and semi-

parametric distribution of innovation in the estimation of VaR of a portfolio with arbitrary weights. 

Three MGARCH models, the diagonal VEC, the DCC of Tse and Tsui (2002) and the DCC of 

Engle (2002) have been used to estimate VaR of a portfolio made up of the Standard and Poorõs 

500 (S&P 500) and NASDAQ indices. The Kupiec likelihood ratio test is used to compare the 

different methods. The authors find that the semi-parametric distribution improves VaR estimates 

when compared to the normal and t distributions. However, the authors fail to assess the effect of 

using different weights on the performance of the different VaR models, a limitation that our study 

addresses.  

A few studies have made comparisons of multivariate GARCH and univariate GARCH models in 

the estimation of portfolio VaR. In addition, the distribution of the GARCH model also matters 
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when evaluating which model best fits the data. Morimoto and Kawasaki (2008) generate a regular 

time series from irregularly spaced data to evaluate intraday value risk by comparing the forecasting 

performance of five univariate models and five multivariate GARCH models. The univariate 

models used in the study include the normal, normal GARCH, student, student GARCH and the 

RiskMetrics and the multivariate GARCH models include the VECH, BEKK, diagonal, CCC and 

the DCC. As in the Hsu Ku and Wang (2008) study, the DCC is found to be the best forecasting 

model.  

Santos, Nogales and Ruiz (2013) also compare the performance of multivariate GARCH models 

with univariate models. Three multivariate GARCH models are used in the forecasting of VaR: 

these included DCC-GARCH, CCC-GARCH and Asymmetric DCC-GARCH. Three real market 

portfolios of daily returns are used: the first portfolio is made up of returns of 48 US industry 

portfolios, the second is composed of returns of 25 portfolios of stocks formed on the basis of 

the size and book-to-market and the third portfolio is made up of returns of all stocks of the S&P 

100 index. The models are compared by making use of back-testing and the CPA test. Results 

show that the DCC-GARCH-t is the most appropriate specification when used in the estimation 

of portfolio VaR. Multivariate student-t models, except for the CCC, gives the lowest number of 

violations as compared to the normal distribution models. The DCC and asymmetric DCC 

GARCH models outperform the CCC, thus proving that conditional correlations are dynamic 

rather than constant. 

While there seems to be a consensus on the preeminence of the DCC-GARCH model over other 

conditional correlation GARCH models in estimating VaR, this should not be seen as a stylized 

fact but rather be left as a matter of empirical analysis. Thus, this paper adds to the literature on 

portfolio market risk estimation by comparing a family of conditional correlation GARCH models, 

the CCC, DCC and ADCC-GARCH in estimating the VaR.   

 

3. Methodology 

 

3.1 Value-at-risk methods: The variance-covariance method 

Value-at-risk (VaR) is a measure of potential loss in value of a risky asset or portfolio over a defined 

period for a given confidence level. From equation 4.1, given that c is the confidence level and L 

is the loss, Jorion (2007) defines the VaR as the smallest loss in absolute value such that: 

ὖὒ ὠὥὙ ρ ὧ     (3.1) 
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As already mentioned, there are three methods of quantifying VaR, namely the historical 

simulation, Monte Carlo simulation and the variance-covariance method. Our study employs the 

variance-covariance method from different portfolios made up of equity and foreign exchange 

assets and constructed with different weights of each asset. 

According to Jorion (2007), the portfolio rate of return is given by: 

Ὑȟ В ύȟὙȟ     (3.2)  

Where ύȟ is the portfolio weight. The portfolio variance is given by: 

„ Ὑȟ ύВ ύ    (3.3) 

Where ɫ  is the forecast of the covariance matrix. 

We use the 90% confidence level for all our VaR calculations. Based on the conditional volatility 

(covariance matrix) obtained from the three MGARCH models, the portfolio VaR is then given 

by: 

ὠὥὙὉὙ ‎ύɫ ύ      

Where ‎ corresponds to a parametric distribution which can either be the normal distribution or 

the student-t distribution, and )(RE  is the expected return of a portfolio. It is important to note 

that E(R) is often approximated to zero. Thus, equation 4.4 becomes 

ὠὥὙ ‎ύɫ ύ        (3.4) 

As stated earlier, one of the aims of this study is to find the most appropriate portfolio weights 

and the multivariate volatility model that will minimize the estimated VaR. 

 

3.2 Multivariate volatility models 

Tsay (2010) states that in order to understand the dynamic structure of the global finance, financial 

markets must be considered to be related, as they are dependent on each other. Hsu Ku (2008) 

adds that the transmission effects should not be overlooked in portfolio construction as their level 

has risen as a result of the increase in the level of interactions in the major financial markets. Thus, 

it is essential to account for asset interdependence when estimating VaR using covariance-variance 

method. It is in this context that this study makes use of the multivariate DCC GARCH model to 
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account for time-varying correlation among assets in a given portfolio. Taking into account time-

varying correlations is useful in finance as evidence shows that correlation coefficients change over 

time in real applications (Engle, 2002). 

Our study focuses on the calculation of portfolio VaR; therefore we employ simple methods for 

modelling the dynamic relationship between volatility processes of multiple asset returns. Thus we 

model the conditional covariance matrix of multiple asset returns, which is essential for the 

computation of value-at-risk of a position made up of multiple returns to take into account co-

movements in financial returns. 

3.2.1 Multivariate GARCH models 

If we let ►◄ be a multivariate return series, we can rewrite it as: 

ὶ ‘ ‐     (3.5)   

Where ‘ ὉὶȿὊ , is the conditional expectation of ὶ given the past information Ὂ  and 

‐  ‐ȟȣȟ‐ ȟ is the shock of the series at time t and is given by: 

‐ Ὄ ᾀ      (3.6)  

Such that ὅέὺ‐ȿὊ ὅέὺὶȿὊ Ὄ 

Where Ὄ is a N x N positive definite conditional covariance matrix of portfolio returns and ᾀ is 

a N x 1 independently and identically distributed random vector with mean zero and identity 

covariance matrix; 

ᾀͯ πȟὍ  

Where Ὅ is the identity matrix of order N. 

Different specifications of Ὄ related to the classes of multivariate conditional correlation GARCH 

models, namely the constant conditional correlation (CCC) GARCH model of Bollerslev (1990), 

the dynamic conditional correlation (DCC) GARCH model of Engle (2002) and asymmetric 

dynamic conditional correlation (ADCC) GARCH model of Cappiello (2006), will be reviewed in 

the following subsections.  

3.2.2 The constant conditional correlation (CCC) GARCH model  
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Bollerslev (1990) proposes the CCC GARCH model with constant conditional correlations. The 

CCC GARCH model can be estimated in two steps: firstly univariate GARCH models are 

employed to estimate the volatility of each series, and in the second step, standardized residuals 

from the first step are employed to construct the conditional correlation matrix. The CCC 

GARCH is defined as:  

 Ὄ  ὈὙὈ     (3.7) 

   

Where Ὀ= 

Ὤ ȟ Ễ π

ể Ệ ể

π Ễ Ὤ ȟ

   and R =

ρ Ễ ”
ể Ệ ể
” Ễ ρ

  (3.8) 

and the variance equation for the CCC is given by: 

Ὤȟ ὅ ὥ‐ȟ ὦὬȟȟ      Ὤȟ ” Ὤȟ Ὤȟ  (3.9) 

Where ”  is the constant unconditional correlation and 2,1=i  with 1 representing the foreign 

exchange market and 2 the equity market. 

In other words, where Ὀ ὨὭὥὫ Ὤ ȣὬ  with diag (.) being the operator that transforms 

a Nx1 vector into a NxN diagonal matrix and Ὤ  follows any univariate GARCH model. R is a 

symmetric positive definite conditional correlation matrix with elements ”ȟ where ”ȟ ρ and 

contains constant conditional correlations ” . 

 

3.2.3 The dynamic conditional correlation (DCC) model  

Given the limits of the CCC GARCH models, Engle (2002) proposed the dynamic conditional 

correlation (DCC) model, which has the flexibility of univariate GARCH but not the complexity 

of other MGARCH models with the advantage that the number of parameters to be estimated in 

the correlation does not depend on the number of series to be correlated. The DCC is an 

extension/generalization of the constant conditional correlation (CCC) model of Bollerslev (1990), 

and it assumes that the conditional correlation matrix is time-dependent. The DCC GARCH 

model is defined as:  

Ὄ ὈὙὈ      (3.10) 
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Where Ὀ is defined as equation 4.8 above and  

Ὑ ὨὭὥὫ ὗ ὗὨὭὥὫὗ   

ὗ ήȟ  

ὨὭὥὫὗ ὨὭὥὫ
ȟ
ȟȣȟ

ȟ
 (3.11)  

The elements of ὗ are given by: 

ὗ ρ ‌ ‍ὗ ‌‭ ‭ ‍ὗ  and can be reduced to: 

ήȟ ”Ӷ ‌‭ ‭ ”Ӷ ‍ήȟ ”Ӷ  (3.12) 

Where ὗ is the unconditional covariance of standardized residuals from the univariate GARCH 

models and diag ὗ is a diagonal matrix that contains diagonal elements of an N x N positive 

definite matrix ὗ and  ‭  is the standardized innovation vector with elements ‭
‐

„ȟ
ȟ   

ὗ is the N x N unconditional covariance matrix of ‭ and ‌ and ‍ are non-negative scalar 

parameters that ensure that ‌ ‍ ρ. 

The variance equation for the DCC model is then given by: 

Ὤȟ ὅ ὥ ‐ȟ ὦ Ὤȟ              Ὤȟ ὅ ὥ ‐ȟ ὦ Ὤȟ   

ήȟ ”Ӷ ‌‭ ‭ ”Ӷ ‍ήȟ ”Ӷ      Ὤȟ ”ȟȟ Ὤȟ Ὤȟ 

 (3.13) 

 

3.2.4 The asymmetric dynamic conditional correlation (AsyDCC) model  

This model is an extension of the DCC and was first proposed by Cappiello et al. (2006). It takes 

into account asymmetry in conditional correlations, and in this model ὗ is given by: 

ὗ ὗ ‌ὗ ‍ὗ ɜ‏ ‌‭ ‭ ‍ὗ ὲ‏ ὲ    

 (3.14)    

Where ὲ Ὅ‭ πṩ‭ ὥὲὨ ɜ Ὁὲὲ] 
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It is assumed that for ὗ to be positive definite ‌ ‍ ‏‗ ρ should hold where ‗ is the 

maximum eigenvalue of ὗ ὔὗ . 

 

3.3 Portfolio construction 

With regard to the construction of different portfolios, this study makes use of three different sets 

of arbitrarily chosen portfolio weights for each of the BRICS countries. For portfolio 1 (PF 1) we 

give equal weighting to equities and currencies (0.5, 0.5).  More weight is assigned to equities and 

less to currencies (0.8, 0.2) for the construction of PF 2 and for the construction for PF 3 we give 

less weight to equities and more to currencies (0.2, 0.8). Through this arbitrary weight allocation, 

the study aims at assessing which of the portfolio is less risky given the composition of assets 

(equity and foreign exchange) within each of the BRICS countries. 

  

3.4 Evaluation methods 

A substantial number of studies have used the Kupiec (1995) test and the Christofferson (1998) 

test to back-test VaR models, but these tests are suitable only in evaluating the performance of an 

individual model. To compare the VaR forecasting performance of the different multivariate 

GARCH models and to back-test these models, this study makes use of efficacious ranking 

methods such as the Quadratic Probability Score function (QPS), the root mean square error 

(RMSE) and average deviations (AD).  

3.4.1 The quadratic probability score function (QPS)  

According to Lopez (1997), the quadratic probability score function is expressed as: 

ὗὖὛ В ὅ ὴ      (3.15) 

Where n is the number of trading days in the testing period, p is the expected probability of 

exceptions, ὅ is a predetermined binary loss function reflecting the interest of users and ὒ is 

denoted as the actual losses. Thus ὅ is an indicator function that equals one if the specified event 

happens and zero otherwise. ὅ is given by: 

ὅ
ρ  ὒ ὠὥὙ
π  ὒ  ὠὥὙ

     (3.16) 
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The QPS ranges between zero and two, and according to Lopez (1997) the best-performing VaR 

model produces the lowest score.  

3.4.2 The root mean squared error (RMSE)  

The RMSE is expressed as: 

ὙὓὛὉ Ὁ ὠὥὙ ὒ  ВὠὥὙ ὒ  (3.17) 

This measure is applied only during non-violation days ð thus when actual losses are less than or 

equal to the VaR and the smallest RMSE is preferred.  

Finally we use the number of exceptions/prediction failures, which is the number of times the 

actual returns are less than the estimated VaR and average deviations (AD). Average deviation is 

the average absolute difference between the VaR and the realized return series and is given by: 

ὃὈ В ȿὠὥὙȿ ȿὶȿ     (3.18) 

Where m is the number of days in the testing period, ὶ is the realized return series and the 

superscript (+) denotes that the AD computation considers only situations where ȿὠὥὙȿ ȿὶȿ 

and sound risk management requires lower levels of AD (Hsu Ku & Wang, 2008).  
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4. Data and estimation of results 

 

4.1 Data description 

Given the objective of the study, which consists of estimating and evaluating the performance of 

the VaR of the different portfolios constructed by combining positions in the foreign exchange 

and equity markets of the different BRICS countries, we make use of daily data for the foreign 

exchange (currency) and equity markets from Brazil, India, China and South Africa (weekly data is 

used for Russia because of the unavailability of daily data). The dataset for four of the countries 

excluding Russia is from 4 January 2005 to 10 September 2014 and from 5 July 1998 to 28 

December 2014 for Russia1. The equity market indexes from the five countries used in the study 

are: the Brazilian Ibovespa, Brasil Sao Paulo Stock Exchange Index (IBOV); Russian MICEX 

index; Indian S&P BSE SENSEX Index (SENSEX; Chinese Shanghai Stock Exchange Composite 

Index (SHCOMP) and the South African Johannesburg All Share Index (ALSI). In addition, the 

Brazilian real/USD (BRL), Russian ruble/USD (RUB); Indian rupee/USD (INR) renminbi/USD 

(CYN) and the rand/USD (Zar) exchange rates are used. The data is sourced from I-net Bridge. 

It is important to note that for both daily data and weekly data the last 252 observations are used 

for VaR estimation and the back-testing exercise.  

The table below shows the different portfolios constructed for each country. 

Table 1: Portfolio construction 

Country Portfolio Assets PF1 weights PF2 weights PF3 weights 

Brazil BRL/USD, IBOV 0.5, 0.5 0.2, 0.8 0.8, 0.2 

     

     
Russia RUB/USD, MICEX 0.5, 0.5 0.2, 0.8 0.8, 0.2 

     
India INR/USD, SENSEX 0.5, 0.5 0.2, 0.8 0.8, 0.2 

     
China CYN/USD, SHCOMP 0.5, 0.5 0.2, 0.8 0.8, 0.2 

     
South Africa ZAR/USD, ALSI 0.5, 0.5 0.2, 0.8 0.8, 0.2 

Note: the numbers show the weight of currency and equity, respectively, in each portfolio. 

                                                           
1 A long weekly sample aimed at increasing the number of observations.  
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According to Table 1 above, to construct portfolio 1 (PF 1) we give equal weighting to both 

equities and currencies (0.5, 0.5).  More weight is assigned to equities and less to currencies (0.8, 

0.2) for the construction of PF 2. For the construction for PF 3 we give less weight to equities and 

more to currencies (0.2, 0.8). Increased volatility is observed in all the foreign exchange and equity 

markets, especially from the end of 2007 to 2010, and this occurrence is ascribed to the panic in 

the markets caused by the global financial crisis (see Figure A1). The Indian Sensex had the largest 

jump in volatility during this period, while both the Chinese SHCOMP and the cyn seemed to be 

the least affected by the crisis. 

Table 2 presents the descriptive statistics of BRICS foreign exchange and equity markets daily log 

returns. The table shows that micex has the highest return and the highest risk with a standard 

deviation of 6.860, while the cyn had the lowest return and the lowest risk, as shown by a standard 

deviation of 0.122. In addition, the table shows that the average daily return for both brl and the 

cyn are negative, while the rest of the returns had positive average daily returns. Furthermore, it is 

evident from the results reported in Table 2 that all equity returns are more volatile than foreign 

exchange returns. Lastly, all the series are fat-tailed with kurtosis of greater than 3. 

Table 2: Descriptive statistics of log returns of currency and equity 

Statistic BRL 

 

IBOVESPA RUB MICEX  INR  BSE CYN SHCOMP ZAR ALSI  

Mean -0.007 0.034 0.107 0.255 0.013 0.056 -0.012 0.025 0.024 0.055 

Standard 

deviation 
1.133         1.736          2.806            6.860 0.535 1.52 0.122 1.609 1.105 1.24 

Minimum  -7.259 -12.096 -45.183 -28.768 -3.551 -11.604 -2.019 -9.278 -7.475 -7.581 

Maximum 12.047 13.678 55.595 35.667 4.091 15.99 0.858 9.034 15.913 6.834 

Kurtosis 12.469 6.624 10.378 69.201 6.305 8.704 36.879 4.162 20.288 4.301 

Skewness 0.952 -0.039 -0.045 4.240 0.275 -0.008 -1.748 -0.342 1.373 -0.22 

                   

 

 

4.2 VaR estimation 

In order to estimate the variance-covariance VaR for the four BRICS countries we make use of 

the CCC, DCC and ADCC GARCH models for volatility model. The following steps are taken: 
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1. Portfolio weights are chosen arbitrarily (see Table 1) with the aim of assessing how 

different weights of the two assets in a portfolio affect the performance of the VaR 

measure. 

2. Then we estimate volatility models, namely the CCC, DCC and the ADCC. 

3. Lastly, using portfolio weights from step 1 and the standard deviations from step 2, the 

VaR is estimated as per equation 3.4.  

We follow the steps described above to estimate the VaR of each of the portfolios in specific 

BRICS countries. We make use of the last 252 observations to forecast the one-day 90% VaR of 

these portfolios. Figures A1 to A15 in the appendix display the estimated VaR obtained from the 

different GARCH models, namely the CCC-, DCC- and ADCC-GARCH models,2 against the 

returns of each of the portfolios. For example, Figure A1 displays the VaR obtained from the 

CCC-GARCH models with normal (CCC normal) and student-t (CCC t) distributions against the 

returns of the different portfolios, namely PF1, PF2 and PF3, respectively. It is worth noting that 

the number of exceptions, i.e. the number of times the negative return or loss is greater in absolute 

value than the VaR estimates, is deduced for these figures. In tables 3 to 7, we summarise the 

number of exceptions obtained by comparing the VaR obtained from each of the GARCH models 

and the given portfolio returns for each BRICS country. For example, Table 3 shows that in South 

Africa the VaR for PF 3 has the least exceptions compared to the VaR of the rest of the portfolios. 

Moreover, the results reported in Table 3 show that in terms of the GARCH models used to 

estimate portfolio VaR, the DCC_t fares better than all the other models in SA. The CCC fares 

the worst in two of the three portfolios. Similarly, the results reported in Table 4 show the better 

performance of a dynamic conditional GARCH model in estimating the VaR in China. The results 

reported in Table 4 show that the ADCC_t model outperforms all the other models with zero 

exceptions, followed by the DCC_t. The CCC fares the worst among the three portfolios with the 

highest number of exceptions. 

Table 5 shows that in India, PF2 has the least exceptions and the DCC_norm. Also, DCC_t and 

ADCC_norm models outperform all the other models with zero exceptions, followed by the 

ADCC_t. The CCC_t and CCC_norm perform the worst in two portfolios (1 and 2) with the 

highest number of exceptions. The results reported in Table 6 show that in Brazil PF3 has the least 

exceptions and the DCC_norm fares better than all the other models. All the other models 

perform similarly with the same number of exceptions. Table 7 shows that in Russia, PF 2 has the 

                                                           
2 The estimation of these volatility models can be provided on request. 
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least exceptions across all models with zero exceptions. However, PF3 has the highest number of 

exceptions for Russia. 

It is important to note that exception criteria cannot be considered as the only benchmark for 

selecting the best VaR model or the best portfolio. One needs to apply performance evaluation 

methods to establish which portfolio provides the least VaR (see Hsu Ku and Wang, 2008).   

Table 3: Exceptions/Violations for South Africa 

  PF 1 PF 2 PF 3 

weights 0.5, 0.5 0.2, 0.8 0.8, 0.2 

CCC_norm 4 9 4 

CCC_t 4 8 4 

DCC_norm 5 9 4 

DCC_t 3 2 3 

ADCC_norm 4 8 4 

ADCC_t 4 6 2 

 

 

Table 4: Exceptions/Violations for China 

  PF 1 PF 2 PF 3 

weights 0.5, 0.5 0.2, 0.8 0.8, 0.2 

CCC_norm 11 10 7 

CCC_ t 2 3 3 

DCC_norm 1 1 2 

DCC_t 1 1 1 

ADCC_norm 1 1 2 

ADCC_t 0 0 0 

 

 

Table 5: Exceptions/Violations for India 

  PF 1 PF 2 PF 3 

weights 0.5, 0.5 0.2, 0.8 0.8, 0.2 

CCC_norm 7 4 6 

CCC_t 7 4 6 

DCC_norm 1 0 6 

DCC_t 1 0 4 

ADCC_norm 1 0 8 

ADCC_t 2 1 7 
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Table 6: Exceptions/Violations for Brazil 

  PF 1 PF 2 PF 3 

weights 0.5, 0.5 0.2, 0.8 0.8, 0.2 

CCC_norm 10 9 7 

CCC_t 10 9 7 

DCC_norm 5 4 5 

DCC_t 11 9 7 

ADCC_norm 9 9 7 

ADCC_t 9 8 7 

 

Table 7: Exceptions for Russia 

  PF 1 PF 2 PF 3 

weights 0.5, 0.5 0.2, 0.8 0.8, 0.2 

CCC_norm 7 0 52 

CCC_t 6 0 53 

DCC_norm 14 0 61 

DCC_t 10 0 60 

ADCC_norm 14 0 61 

ADCC_t 2 0 46 

 

4.3 Performance evaluation of each VaR model 

In this section we employ the AD, the QPS function and the RMSE measures to evaluate the 

performance of the models with the aid of the above exceptions. Thus we employ the three 

methods to back-test our models as shown in equations 3.18, 3.15 and 3.17. In Tables A1 to A5 

in the appendix, we report the back-testing results according to the AD, the QPS and the RMSE 

for the five BRICS countries. When making use of the average deviations as a measure of accuracy 

of VaR models, low deviations are favourable as they represent close to perfect risk management. 

In addition, as already mentioned in the previous chapter, the QPS ranges between zero and two, 

and, according to Lopez (1999), the best-performing VaR model produces the lowest score. 

Table A1 shows that in South Africa, the DCC norm VaR has the least deviations across all three 

portfolios. Moreover, PF1 has the least average deviations among all portfolios. In terms of the 

QPS measure, the DCC_t VaR and ADCC_t VaR perform well in two out of the three portfolios 

and both PF2 and PF3 have the lowest QPS measure. According to the RMSE the DCC_norm 

VaR fares the best in comparison to the rest of the models as a GARCH model for VaR estimation, 

and PF1 has the lowest RMSE overall. 
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Table A2 shows a different outcome in China. The CCC_norm VaR outperforms all its 

counterparts across all three portfolios according to the AD and the RMSE, and PF3 has the least 

deviations and RMSE when compared to the other portfolios. The ADCC_t VaR outperforms all 

its counterparts in terms of the QPS with the lowest QPS across all 3 portfolios. As shown in 

Table A3, the CCC_norm VaR outperforms all its counterparts across all three portfolios 

according to the AD. According to the same criteria, PF3 has the least deviations when compared 

to the other portfolios in India. According to the QPS, both the DCC_norm VaR and DCC_t 

VaR and the ADCC_norm VaR outperform all the other dynamic correlation models, and PF2 

has the least QPS. The ADCC_norm VaR fares the best in terms of the RMSE, while PF3 has the 

lowest RMSE. 

Table A4 shows that according to the AD, the CCC_norm VaR and ADCC_t VaR outperform 

the other models in Brazil. In addition, PF3 has the least average deviations. The DCC_norm VaR 

outperforms all the other models according to the QPS, and PF2 has the least QPS while the CCC 

is the worst-performing model. In terms of the RMSE, the ADCC_t VaR outperforms all the other 

models, with PF3 performing better than the other two portfolios. Table A5 shows that according 

to average deviations and the RMSE, the DCC and ADCC_norm VaR outperforms its 

counterparts and PF3 has the lowest AD and RMSE in Russia. In terms of the QPS, PF2 has the 

lowest QPS across all models and all models fared the same. Table 8 gives a summary of the 

performance evaluation results. 

Given that the aim of this paper is to assess the best GARCH models for VaR estimation and the 

best portfolio, in combining currency and equity indices, that minimizes loses in each of the BRICS 

countries, Table 8 provides a further treatment of the above reported results.  The results reported 

in Table 8 show that, in SA in terms of AD and the RMSE, PF1 outperforms the other portfolios, 

while according to the QPS both PF2 and 3 performed well. Nevertheless, when PF3 dominates 

the other portfolios, it dominates it by a higher amount than when the other portfolios dominate. 

For example in SA according to the AD, PF1 dominates PF2 by 13.82%= (0.560-0.492)/0.492, 

while PF1 dominates PF3 by 25% = (0.615-0.492)/0.492. In terms of the QPS, PF2 dominates 

PF1 by 18.18%= (0.039-0.033)/0.033, while PF3 dominates PF1 by 36.36% = (0.045-

0.033)/0.033. In terms of the RMSE, PF1 dominates PF2 by 14.13% = (1.171-1.026)/1.026, while 

PF1 dominates PF3 by 20.27% = (1.234-1.026)/1.026. Therefore where PF3 dominates, it 

dominates by a larger value than when another portfolio is dominating. In addition, according to 

all the four performance evaluation methods, the DCC_norm VaR outperforms all the other 

models in the same ranking order. In China PF3 fares well according to AD and the RMSE, yet 
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according to the QPS all portfolios fare the same. Across all performance measures, PF3 

dominates the other portfolios. In addition, the ADCC_t VaR performs better than the other 

models. In India, PF3 shows the best performance according to the AD and the RMSE. However, 

a different case is observed in India where all the models except for the CCC_t VaR perform well 

according to the different evaluation methods. The ADCC_norm and DCC_t perform better than 

the rest of the models. In Brazil PF3 outperforms its counterparts according to the AD and the 

RMSE, while PF2 fares well according to the QPS. PF3 dominates all the other portfolios.  The 

DCC_norm outperforms the rest of the models in Brazil. In Russia PF2 fares well according to 

the QPS, while PF3 fares well according to the AD and RMSE. Also, according to our ranking 

order PF3 dominates the other portfolios. In addition, the DCC and ADCC_norm fare better than 

the other models.  

Across all five countries, the DCC performs best, followed by the ADCC, while the CCC comes 

last. Thus most methods are in support of the dynamic correlation models (DCC and the ADCC) 

and thus models of dynamic correlation perform better than the CCC. This indicates that dynamic 

correlations between assets are essential for portfolio risk management in the BRICS. In addition, 

these results indicate the importance of the use of models that account for asymmetries in both 

asset returns and correlations for appropriate VaR forecasts.  

In terms of portfolio performance, of all three of our portfolios, PF3 (which gives more weight to 

foreign currency market (80%) and less weight to equities (20%)) performs better across all 

performance measures in all five BRICS countries. The portfolio dominates both PF1 and PF2 in 

all the BRICS countries. This suggests that giving more weight to the foreign exchange market and 

less to equities proves to be the best way of minimizing loses in BRICS when holding a portfolio 

made up of foreign exchanges and equities. This is probably due to the fact that each position in 

equity is often balanced by a position in the currency market that hedges against foreign exchange 

risk. In addition, the foreign exchange markets of emerging economies attract speculators, hedgers 

and arbitrageurs, so there are high investment potentials/opportunities, which do not necessarily 

require a counterpart investment in the equity market. Thus more weight is given to currency 

markets than equities. This finding is in line with that of Bonga-Bonga and Hoveni (2013) who 

find that the size of the equity and foreign exchange market is disproportionate: for instance, the 

daily average turnover of the foreign exchange market was estimated at US$9 billion in 2010, yet 

the average daily equity trading was estimated at US$2 billion, thus contributing to a higher 

participation in the foreign exchange market. Lastly, investment opportunities such as carry trade, 

where an investor borrows money at low interest rates, usually in developed economies, and 
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invests in emerging markets where interest rates are high, for example, also leads to a higher 

participation in the foreign exchange market. Thus allocating more weight to forex and less to 

equities results in fewer exceptions, lower AD, QPS and RMSE than when more is allocated to 

equities and when the two assets are allocated equally. 
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Table 8:  Summary of performance evaluation results for each model 

 

  AD QPS RMSE 

Best model 

according to 

relative ranking 

order 

Best 

portfolio in 

terms of 

AD 

Best 

portfolio in 

terms of 

QPS 

Best 

portfolio in 

terms of 

the RMSE 

Best 

portfolio 

according to 

relative 

ranking 

order 

SA DCC_norm DCC_t & ADCC_t DCC_norm DCC_t PF1 PF2 & PF 3 PF1 PF3 

China CCC_norm ADCC_t CCC_norm ADCC_t PF3 PF1, 2 & 3 PF3 PF3 

India CCC_norm 
DCC_norm & t, 

ADCC_norm 
ADCC_norm 

 ADCC_norm 

&DCC_t 
PF3 PF2 PF3  PF3 

Brazil 
ADCC_t & 

CCC_norm 
DCC_norm DCC_norm DCC_norm PF3 PF2 PF3 PF3 

Russia 
DCC & 

ADCC_norm 
N/A  

DCC 

&ADCC_norm 

ADCC_norm & 

DCC_norm 
PF3 PF2 PF3 PF3 

 

Note 1: this table reports the best volatility model according to specific performance evaluation criteria as well as the optimal portfolio according to the 

same criteria for .each of the BRICS countries.  

Note 2: N/A: None of the models outperformed its counterparts, i.e. all the models fared the same 
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5 Conclusion 

The aim of this paper was to compare the performance of three multivariate GARCH models, the 

DCC, ADCC and CCC GARCH models, in estimating portfolio VaR for each of the five BRICS 

countries (Brazil, Russia, India, China and South Africa). Different performance metrics for the 

evaluation of the estimated VaR are considered. Three different portfolios made up of different 

combinations of equity index and foreign exchange (forex) assets were constructed for each BRICS 

country. The data is drawn from stock market indices and foreign exchange market data from the 

five countries. In order to assess the performance of the VaR estimation, this paper uses 

performance metrics such as the quadratic probability score (QPS) function, the root mean square 

error (RMSE), the number of exceptions / prediction failures and average deviations (AD). Both 

the normal and student t distributions are assumed.  

Our findings show that across the five countries, the DCC performs best, followed by the ADCC, 

while the CCC has the worst performance. Thus most methods are in support of the dynamic 

correlation models (DCC and the ADCC), as models of dynamic correlation perform better than 

the CCC. This indicates that dynamic correlations between assets are essential for portfolio risk 

management in the BRICS. In addition, these results indicate the importance of the use of models 

that allow for asymmetries in both asset returns and correlations for appropriate VaR forecasts. In 

terms of portfolio weights, of all three of our portfolios, PF3 (which gives more weight to foreign 

exchanges (80%) and less weight to equities (20%)) showed a better performance across all four 

models in the countries covered in our paper. Therefore giving more weight to forex and less to 

equities proves to be the best way of minimizing loses in BRICS when holding a portfolio made 

up of forex and equities. Our results are consistent with those of previous studies such as 

Morimoto and Kawasaki (2008), Hsu Ku and Wang (2008) and Santos, Nogales and Ruiz (2013) 

which  affirm that models of dynamic correlation such as the DCC outperform the constant 

correlation model (CCC) in forecasting VaR.  

The findings of this paper provide investors looking into investing in BRICSõ countries with a 

guideline on how to combine holdings in the currency and equity markets in order to constitute a 

portfolio that minimizes loses. Investors need to make informed decisions with regard to portfolio 

selection and market risk measurement. However, we suggest that for further research, portfolios 

with more than two assets be considered, as they allow for better diversification. With the use of 

more than two assets in a portfolio, the mean variance method, copulas, the Black-Litterman 

method and other portfolio optimization methods can be used to obtain more reliable portfolio 
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weights. In addition we suggest the estimation of VaR for a combined portfolio of all BRICS 

countries.  
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Appendix 

Table A1: South Africa back-testing results 

SA AD QPS RMSE 

VaR Model PF1 PF2 PF3 PF1 PF2 PF3 PF1 PF2 PF3 

CCC_norm 0.508 0.568 0.624 0.045 0.077 0.045 1.042 1.178 1.243 

CCC_t 0.514 0.576 0.625 0.045 0.071 0.045 1.046 1.186 1.241 

DCC_norm 0.492 0.560 0.615 0.052 0.077 0.045 1.026 1.171 1.234 

DCC_t 0.613 0.782 0.683 0.039 0.033 0.039 1.137 1.374 1.293 

ADCC_norm 0.505 0.574 0.628 0.046 0.071 0.046 1.039 1.191 1.244 

ADCC_t 0.574 0.639 0.721 0.045 0.058 0.033 1.100 1.244 1.325 

 

Table A2: China back-testing results 

China AD QPS RMSE 

VaR model PF1 PF2 PF3 PF1 PF2 PF3 PF1 PF2 PF3 

CCC_norm 0.499 0.802 0.214 0.090 0.084 0.065 0.919 1.462 0.407 

CCC_t 0.677 1.080 0.296 0.033 0.039 0.039 1.088 1.728 0.489 

DCC_norm 0.834 1.314 0.377 0.026 0.026 0.033 1.239 1.956 0.558 

DCC_t 1.152 1.850 0.455 0.026 0.026 0.026 1.544 2.468 0.633 

ADCC_norm 0.835 1.329 0.381 0.026 0.026 0.033 1.247 1.980 0.564 

ADCC_t 1.360 2.175 0.566 0.020 0.020 0.020 1.743 2.780 0.746 

 

Table A3: India back-testing results 

India AD QPS RMSE 

VaR Model PF1 PF2 PF3 PF1 PF2 PF3 PF1 PF2 PF3 

CCC_norm 0.552 0.766 0.491 0.065 0.045 0.058 1.074 1.488 0.959 

CCC_t 0.573 0.802 0.500 0.065 0.045 0.058 1.094 1.522 0.971 

DCC_norm 1.111 1.763 0.593 0.026 0.020 0.058 1.595 2.430 1.018 

DCC_t 1.179 1.816 0.727 0.026 0.020 0.045 1.661 2.484 1.149 

ADCC_norm 0.920 1.460 0.498 0.026 0.020 0.071 1.412 2.138 0.930 

ADCC_t 0.845 1.297 0.557 0.033 0.026 0.065 1.364 2.020 0.985 

 

 

Table A4: Brazil back-testing results 

Brazil AD QPS RMSE 

VaR Model PF1 PF2 PF3 PF1 PF2 PF3 PF1 PF2 PF3 

CCC_norm 0.757 1.002 0.683 0.084 0.077 0.065 1.433 1.964 1.330 

CCC_t 0.755 1.002 0.700 0.084 0.077 0.065 1.431 1.964 1.326 
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DCC_norm 0.985 1.321 0.942 0.052 0.045 0.052 1.659 2.286 1.562 

DCC_t 0.744 1.013 0.690 0.090 0.077 0.065 1.420 1.973 1.317 

ADCC_norm 0.721 0.971 0.690 0.077 0.077 0.065 1.404 1.940 1.316 

ADCC_t 0.729 0.990 0.683 0.077 0.071 0.065 1.412 1.958 1.311 

 

Table A5: Russia back-testing results  

Russia AD QPS RMSE 

VaR Model PF1 PF2 PF3 PF1 PF2 PF3 PF1 PF2 PF3 

CCC_norm 2.373 4.883 0.809 0.065 0.020 0.351 4.299 6.385 3.858 

CCC_t 2.526 5.239 0.798 0.058 0.020 0.358 4.460 6.763 3.846 

DCC_norm 1.986 4.697 0.602 0.109 0.020 0.409 3.888 6.182 3.550 

DCC_t 2.180 5.027 0.618 0.084 0.020 0.402 4.090 6.533 3.572 

ADCC_norm 1.986 4.697 0.602 0.109 0.020 0.409 3.888 6.182 3.550 

ADCC_t 3.304 7.057 1.054 0.033 0.020 0.313 5.276 8.783 4.123 

 

 

Figure A1: Different VaR forecasts against realized returns (exceptions) 

Brazil 
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