# Foreign monetary policy expectations and domestic exchange rate behaviour

ESSA conference 2017

Simiso Msomi

UKZN

# Background

- The US economy has large impact on the global economy
- Technological innovation in the US and knowledge generation influences the global economy.
- US macroeconomic forces shape economic wellbeing of the world economy.
- The involvement of the US in the world economy means participation of large number of wealthy consumer and large number of workers.
- Therefore all this create demand for product and services produced around the world.
- During fixed exchange regime world currencies were fixed to the USD
- When currencies started floating countries continued keeping the USD as reserve currency.
- The culture of still persist to today

#### Literature review

- Mehrotra and Kozluk (2008) argued that monetary expansion in China result higher price level and real GDP in Asia.
- Kim (2005) found that in Canada after a shock in foreign monetary policy effect on the foreign exchange rate is experience after a lengthy period.

- Theoretical basis can be traced back seminal work by Svensson and van Wijnbergen (1989).
- Assume that both countries produce two aggregate goods
- At each time t where  $(t = t n \dots, t, \dots t + n)$ , each country has a consumer representing it, on each time period aggregate production is given by  $Y_t$  and  $Y_t^*$ .
- Assume world population is 2 which makes world production of these two goods 2Y<sub>t</sub> and 2Y<sub>t</sub><sup>\*</sup> (production of these products is costless up to this level) , all goods produced are consumed there cannot be preserved between any two or more periods.
- Therefore, if a shortage arises the market is characterized underemployment

- $H_t = \gamma_t H_{t-1}$  and  $F_t^* = \gamma_t^* F_{t-1}^*$
- domestic and foreign monetary policy expansion gross rate are denoted by  $\gamma_t$  and  $\gamma_t^*$  respectively
- $Y_t \leq y_t$  and  $Y_t^* \leq y_t^*$
- domestic and foreign monetary policy expansion gross rate are denoted by  $\gamma_t$  and  $\gamma_t^*$  respectively
- $Y_t \leq y_t$  and  $Y_t^* \leq y_t^*$
- $Exp_t \sum_{T=t}^{\infty} \alpha^{T-t} U(\delta_{H_t}, \delta_{F_t}), 0 < \alpha < 1.$

 Suppose that in R<sub>t</sub> a foreign country undertakes expansionary monetary policy and the domestic consumer learns of the policy being undertaken at that time he/she receives money from domestic transfers and from foreign money transfers.

• 
$$P_{H_t} \delta_{H_t} \le H_{t-1} + (\gamma_t - 1) H_{t-1} \varrho_{H_t-1}$$

- and
- $P_{F_t^*} \varrho_{F_{t-1}^*} \leq F_{t-1}^* + (\gamma_t^* 1) F_{t-1}^* \varrho_{F_{t-1}^*}$

- $\gamma_{H_t} \leq Y_t \text{ and } \gamma_{F_t^*} \leq Y_t^*$
- The customers of assets engage on the sale of these assets subject to budget constraint.
- $H_t + \xi_t F_t^* + \Gamma_{H_t} \partial_{H_t} + \Gamma_{F_t^*} \partial_{F_t^*} + \phi_{H_t} \varrho_{H_t} + \phi_{F_t^*} \varrho_t^* \le [H_{t-1} + Q_{t-1}]$

• . Therefore, the equilibrium condition for asset, goods and money market is defined as

• 
$$\delta_{H_t} = \delta^*_{H_t} = Y_t \le y_t \text{ and } \delta_{F_t^*} = \delta^*_{F_t^*} = Y_t^*$$
 (A)

• 
$$H_t = H_t^* = \dot{H}_t$$
 and  $F_t = F_t^* = \dot{F}_t$  (A')

• 
$$\partial_{H_t} = \partial_{F_t} = \partial^*_{H_t} = \partial_{F_t^*} = \varrho_{H_t} = \varrho_{F_t^*} = \varrho_{H_t^*} = \varrho_{F_t^*} = 1$$
 (A")

• The total number of asset held is normalized to 2, while the total number of output held in both domestic and foreign country is  $2Y_2$  and  $2Y_t^*$ .

• Following Nzimande and Msomi (2016) we decompose the variable into negative and positive component, beginning with a given time series component  $\{A_t\}_{t=0}^T$  the series is decomposed into initial partial process.

• 
$$A_t = A_0 + A_t^+ + A_t^-$$

•  $A_0$  represents values occurring in the beginning

• 
$$A_t^+$$
  $\begin{cases} \Delta A_t^+ \ if \ \Delta A_{t-1} > 0 \\ 0 \ if \ \Delta A_{t-1} < 0 \end{cases}$ 

• and

• 
$$A_t^- = \begin{cases} \Delta A_t^- & \text{if } \Delta A_{t-1} > 0\\ 0 & \text{if } \Delta A_{t-1} < 0 \end{cases}$$

- $l_t = \emptyset_0 A_{1t}^+ + \emptyset_1 A_{1t}^- + \emptyset_2 A_{2t}^+ + \emptyset_0 A_{2t}^-$
- If we suppose there is only one component of the series that emerges in the cointegrating relationship (A), this will be indicating a cointegrating relationship in one direction such that
- $A_{1t}^+ = \emptyset^+ A_{2t}^+ + l_{1t}$  t = 1, ..., T
- $A_{1t}^- = \emptyset^- A_{2t}^- + l_{2t}$  t = 1, ..., T

#### Estimating results

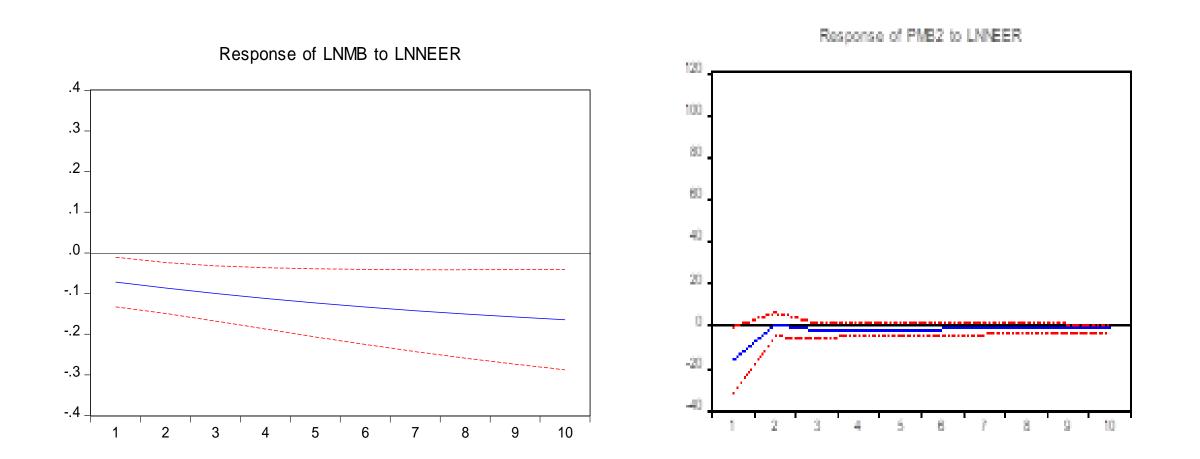
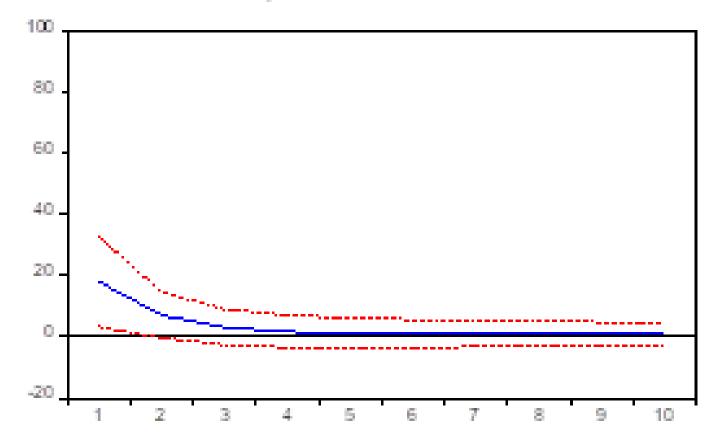

|          | ADF                    |           |        |                        | РР |           |
|----------|------------------------|-----------|--------|------------------------|----|-----------|
| variable | intercept and<br>trend | intercept |        | intercept and<br>trend |    | intercept |
| срі      | 0.6556                 | 2         | 2.7314 | 0.967                  |    | 3.2987    |
| iblr     | -0.34799               | 2         | 2.0481 | 2.1181                 |    | 1.742     |
| mb       | 1.5904                 | (         | 0.0167 | 1.4438                 |    | 0.2117    |
| neer     | 1.8754                 | 2.77928*  |        | 1.9399                 |    | 2.8043*   |
| ор       | 1.8019                 | :         | 1.3897 | 2.0782                 |    | 1.5763    |
| rgdp     | 2.8811                 |           | 0.623  | 4.9498                 |    | 0.0842    |

Table shows unit root test where variable are at levels, ADF and PP test are used where \*\*\*, \*\* and \* respectively stand for significant at 1%, 5% and 10%.

|          |                     | Unit root test |                        |    |           |
|----------|---------------------|----------------|------------------------|----|-----------|
|          | ADF                 |                |                        | РР |           |
| variable | intercept and trend | intercept      | intercept and<br>trend |    | intercept |
| Incpi    | 3.7945**            | 2.4619         | 4.1901                 |    | 3.4224**  |
| iblr     | -0.34799            | 2.0481         | 2.1181                 |    | 1.742     |
| Inmb     | 1.8686              | 0.4914         | 1.6685                 |    | 0.3136    |
| Inneer   | 2.67                | 1.2141         | 2.4904                 |    | 1.2185    |
| Inop     | 2.293               | 1.5972         | 2.1022                 |    | 1.3217    |
| Inrgdp   | 1.5323              | 0.9711         | 4.1161                 |    | 0.4152    |


Table shows unit root test for logged variables where variable are at levels, ADF and PP test are used where \*\*\*, \*\* and \* respectivly stand for significant at 1%, 5% and 10%.

#### Estimation results



#### Estimation results

Response of NMB2 to LNNEER

